

The GOODELL LABORATORY

and the second		
Author	Karen Lin	July 30, 2005
Title	Production of MSCV Retrovirus	
Introduction	The objective of this protocol is to transfect 293T cells and produce high titer of MSCV viruses in a 6-well plate. To perform transfection in a plate with different size, it is necessary to scale up/down the amount of reagents. The size of MSCV vector is negatively correlate with the virus titer. A size of 8.5 kbs (about a 2kb gene insertion) is the maximal size of the retroviral vector we have succeeded.	
Materials	 OPTI-MEM (Invitrogen 31985-062) LipofectAmine 2000 (Invitrogen 11668-019) Growth Medium: DMEM (Invitrogen 11965-092) with 10% FBS (with NO antibiotics) 6-well plates plasmid DNA (It is highly recommended that one does a Midi-prep to prepare for DNA. A good concentration with high quality of DNA usually results in good transfection, thus good virus titer) 	
Protocol		Notes
1.	d -1 Seeding 293T cells in a 6-well plate The density is about 5×10^5 cells /well in a 6-well plate. However, when cells are from a hyper- confluent flask, their growth rate will be slower in the beginning. In this case, more cells will be needed to give rise to 80-90% of cell density -usually 8×10^5 cells /well. When seeding, cells can be cultured in growth medium containing antibiotics.	In our experience, we found the health of 293T cells crucial for the titer of produced MSCV. Generally, 293T cells need to be grown and passaged for at least 2 generations after being thawed. In addition, 293T cells with slower growth rate or those show retardation in duplication is not suitable for virus production. To avoid aggregates of cells in culture, make sure 293T cells are well trypsinized before seeding.
2.	 <u>d 0 Transfection</u> 1. Change medium to an antibiotics-free medium. Plate 2ml/well <u>Make DNA-OPTI mixture (Solution A)</u> 	

	Dissolve DNA in OPTI medium, incubate	
	for 5 minutes	
	MSCV vector 2ug /RXN	
	Eco-pCL vector 2ug /RXN	
	OPTI medium 250ul/ RXN	
	3. <u>Make LipofectAmine-OPTI mixture</u>	
	(Solution B)	
	Dissolve LipofectAmine in OPTI medium	
	10ul LipofectAmine + 250 ul OPTI/RXN	
	Incubate for 5 minutes.	
	4. Mix DNA (Solution A) and LipofectAmine	
	mixture (Solution B), incubate in RT for 20	
	minutes.	
	5. Gently apply DNA-LipofectAmine mixture	
	(500ul/RXN) onto the 293T cells in the 6	
	well plates. Avoid aspiration.	
3.	d 1. Paplaca madium	202T colls may be cosily
э.	<u>d 1 Replace medium</u>	293T cells may be easily
	Replace medium-containing medium, 2ml/ RXN	detached from the plate.
		Removed the old
		medium. Do not let cells
		sit without having new
		medium added so you
		will have to be quick.
		When adding new
		medium, gently tilt the
		plate, and add the
		medium to the wall of
		well so the medium drop
		would not disturb the
		cells.
4.	d 2 Harvest virus	To prevent loosing viral
	48 hours after transfection, harvest surpernatant.	titer in the future during
	To exclude cell debris, one can 1) spin supernatant	viral titering and
	in 4°C, 2000rpm for 10 minutes, and transfer the	infection experiment,
	supernatant to the freezing tubes; or 2) filter the	repeated thaw-freeze
	virus through a 0.45uM syringe filter.	cycles need to be
		avoided. Therefore, it is
		highly recommended to
		aliquot viral supernatant
		before freezing them
		_
L		down at this step.